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A method for extracting hadron states in confining field theories (QCD) from the asymptotic
behavior of two-point functions and the imposition of confinement through the removal of cuts
is reviewed and generalized to take explicit account of the spin-1 nature of the constituents. The
role of perturbative corrections is discussed and explored numerically with anomalous dimension
for arbitrary spin J and to sixth order for the specific example of spin-1 hadronic states. We
conclude that the effects of these are significant though incapable of leading to linear Regge
trajectories, and that the main features of the hadron spectrum must come from the non-
perturbative inverse power corrections.

1. Introduction

QCD in SU(N) of color is believed to be a confining theory, i.e. there are no
cuts corresponding to decay of hadrons into free quarks; moreover, in the N - oo
limit physical cuts from the decay of hadrons disappear and the hadronic spectrum
is discrete [1]. Two-point functions of the type

G = (21) Jd“x " (0IT(0"(x)0®(0))|0) , (1.1)
where ¢ is a variable, related to k2 that will be specified below, and where 0(1)
O are local operators characterized by a definite Lorentz spin, will have a point
spectrum, with the poles of G(f) located at values of ¢ determined by the masses
of hadrons that can be created by the operators O, O® acting on the physical
vacuum,

A scheme has been proposed [2-7] that uses an asymptotic approximation to
G(t), Ga(t), such as would be generated by perturbation theory (because of
asymptotic freedom) or by non-perturbative inverse power corrections [8], to
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construct a cutless G(¢) that approximates G(r) for both asymptotic and non-
asymptotic values of t. The positions and coupling strengths of the bound-state
poles are thereby determined.

As we explain below, in lowest order of perturbation theory the construction
describes a free particle in an infinite well. However, the details of the construction
are not uniquely specified. This is because the input approximation contains too
little information to specify the spin of the particle that appears in the ‘“vacuum
polarization” induced by the “currents” O", O, Better approximations (including
non-perturbative inverse power effects) presumably supply that information. It
turns out, however, that the limitation in the original form of the construction [4],
which is appropriate for spinless particles, can be remedied at the lowest order
level in a simple and physically reasonable way. For a spin-3 particle we are led to
a new construction that emphasizes analyticity in its energy E and brings in
half-integer values of angular momentum. Not only does the new algorithm give
lowest order results consistent with a spin-3 particle in the naive bag*, but it retains
the basic framework for the systematic study of the effects on the spectrum of
interaction corrections to the asymptotic behavior. These corrections can be either
perturbative, which give logarithmic corrections to the lowest order approximation,
or inverse power corrections [8] that are non-perturbative and could be generated
by instanton effects, for example**.

The general form of the asymptotic approximation will be of the form

Ga(t)— t"(1+non-leading terms) . (1.2)

Ga(t) clearly has cuts. The confining algorithm is based on the construction [4] of
a cutless G(¢) that is asymptotically closer to Ga(¢) than any inverse power of ¢,
and therefore approximates G (t) everywhere. The tool is a set of moment conditions
that have a unique solution once CDD singularities [6] are disposed of. We shall
assume that these CDD poles are reduced to the minimum possible and that there
are no extraneous arbitrary parameters in the theory.

The cuts which are removed by this method are the cuts in the qJ amplitude
corresponding to decay into unbound quarks and antiquarks. There is a series of
corrections [3], of order N~', which will introduce physical cuts and thus give a
width to all unstable particles. We do not treat these, and thus, to use old-fashioned
language, may be said to be working in the “narrow resonance’’ approximation.

* By naive bag or bag we mean only that confinement occurs through a boundary condition at some
radius R. None of the intricacies of the MIT bag (see ref. [9]) are implied.

** We believe that the true G(?) inserted into our algorithm would reproduce itself, and that using
non-perturbative contributions in the “asymptotic” two-point function does not imply double
counting of the confinement effects brought in through the cut-removal part of the algorithm. In
fact it is the (presumably non-perturbative) inverse power corrections which will allow us to eliminate
the “bag radius” R.
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It turns out that the moment conditions depend on whether one treats the
functions as having analyticity properties in E” (as for a spinless particle) or in E
(as will be seen to be appropriate for spin-; particles). The spinless case is the one
treated earlier [4, 6]. The central result of this paper is the derivation of the moment
conditions and their solution for the latter case. In sect. 2 we review the basic ideas
and earlier treatment, and describe in more detail the limitations discussed above.
In sect. 3 we describe the algorithm appropriate for spin-3 particles. In sect. 4 we
discuss the corresponding trajectories in leading order and briefly explore the role
of the perturbative logarithmic corrections through the anomalous dimension and
with a sixth order example. With a realistic value for the QCD coupling we shall
see that a not unreasonable p-trajectory emerges.

2. Confinement algorithm

We assume we have calculated the asymptotic approximation to the two-point
function of interest, G(t). To remove the cut from GA(t) to construct G(¢) we
write [4]

N(@©)
GtY=Galt)+——, 2.1
(t)=Galt) 0 (2.1)
where D(t) is an entire functions, whose zeros are the poles of G(¢t). The choice
of N (t) that removes the cut is

T Ji t'—t
_ 1 ® o Im Ga()
- | arpwy AR, (2.2)
Thus,
1 1 = !
G()= GA[t]—;D(t) I ¢ Imt,G_At(t ) D). (2.3)

to

D(t) is determined by the requirement that G () — Ga(¢) vanishes faster than any
inverse power of ¢ as |t|—>00, and that G(¢) has poles with positive residues. This
leads to a set of moment conditions [4],

J P Im GA(tYD()de' =0, p=0,1,2,.... (2.4)
fo

It is convenient to choose ¢ such that the lower limit is zero, which yields the
moment conditions

<0

J t'? Im Ga(t)D(¢')dr' =0, p=0,1,2,.... (2.5)
(4]
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The solution of the moment conditions (2.5) is discussed at length elsewhere [6]
There are in general infinitely many solutions involving infinitely many constants.
With the elimination of all CDD singularities, the solution is unique. It is straight-
forward to show that Im G(¢) = ¢” implies that

Do(v, t) = C(2R~1) "J,2RVY) , (2.6)

i.e. the Bessel function with the cut removed. The zero subscript on Dy is used to
denote that only the leading asymptotic term in Im GA(¢) is used. The so far arbitrary
scale parameter, R, will be discussed below.

Ref. [6] contains discussion of the general problem of the uniqueness of cut
removal with minimum numbers of arbitrary constants. We believe that the rational
function approximation, or moment condition method, is the most efficient from
the point of view of convergence; in any case the result is unique.

We see that the poles are located at the zeros of the Bessel function. When

Im Ga(t) =" [1+Afi()+- -+ ],

then eq. (2.5) can be systematically solved either by use of a Green function [7, 10]
or, for f;(t) an inverse power of t, by a simple ansatz [6] which shows D(», ¢) to be
a series of Bessel functions. It is interesting to observe that the zeros of J, are just
the energy levels for a free spinless particle in a non-relativistic infinite spherical
well. This observation provides us with the direction for the search for a modified
confinement algorithm: since the quarks have spin-3 we look for a scheme that will
yield, to lowest order, a solution to the moment equations that looks like the
solution of the Dirac equation with an infinite spherical well. This will be discussed
in detail in sect. 3.

The scale parameter R is free. With leading power ¢” alone, R is fixed by fixing
the location of the first zero, and thus all “recurrences’ for a given spin are predicted.
Choosing R is equivalent to choosing the radius of an infinite well or bag. In view
of growing evidence that confinement occurs in a potential that is asymptotically
linear, this may appear to be a very restrictive type of confinement. Actually, as
soon as corrections to the t” behavior are available, another procedure, the «-
expansion [3-5] becomes available, and there R no longer appears as a parameter.
Qualitatively the role of R may be understood as follows: Consider a Ga(t) given
by

GA(t)~t”(1+tin) . @2.7)

When #n - o, the dependence on A disappears and we get the result (2.6). The
choice n = o is, however, a well-defined choice and corresponds to a free particle
with a leading interaction correction A/ which can be shown [6] to be equivalent
to a Schrédinger potential (r/R)™, i.e. the well. R does not appear in (2.7) and it
represents the heuristic introduction of a bag when we have no explicit corrections
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to t”. Corrections such as (2.7) with finite n represent the assertion of a confining
potential and allow us to ignore the ¢ corrections which represent the well. The
a-expansion is appropriate for finite n» and R no longer appears when it is applied.

The leading term in Im Ga(t) describes the large-f behavior and thus the short-
distance behavior of the interaction [6]. Thus the lowest lying bound states should
be described satisfactorily with our procedure. The higher lying states will be
determined more accurately as more corrections are added in Im Ga(¥).

The procedure that leads to (2.6) is inadequate when fermion operators are
involved. A signal for this is that v is typically an integer in lowest order. For
example with

0"'=0%= Py, ¥ (2.8)

the lowest order term in Im Ga(t) is calculated using the fermion loop, and when
the appropriate tensor factor [7] (g, — k.k./k?) is removed v = 1. The zeros of J
do not describe a free fermion in a well, for which a linear combination of J;,, and
J3,, is needed*. As noted before, the asymptotic form ¢” does not contain enough
information. This is evident from the fact that with scalar constituents and

0V=0"=¢"5,0 (2.9)

one again gets » = 1, even though one would not expect the spectrum of ‘“‘scalar
positronium’ to be related to that of “spinor positronium.” Effectively one must
look more deeply into the structure of the two-point function. If one looks graphi-
cally at a two-point function one sees that the imaginary part really is described
by a four-point function which for the choice (2.8) describes quark-antiquark
scattering in the center of momentum, in a total angular momentum 1 state with
each quark having energy E =Vk*+m?*. This is why in a complete calculation
(which would have to be non-perturbative) the poles in the vacuum polarization
would be those found in electron-positron scattering (positronium) in a QED
calculation,

The imaginary part for the 2-point function G (1) has different analyticity proper-
ties than are incorporated into the original program. It is in general analytic in E
rather than E” and the cut-removal procedure, eq. (2.2), must be generalized to
take this into account. The more general form takes into account left-hand and

* For example, the free single particle radial Dirac equation is solved by F(r)=J,,(kr) and G(r)=
—V(E-m)/(E+m) J32(kr) for j= l+% and / = 0. All physically interesting quantities are combina-
tions of F and G. Bag bound states are determined by F(R) + G(R) = 0. For the case of the interaction
of two fermions of mass m, these wave functions and conditions will be repeated but m will be
replaced by 2m and R by 3R. See ref. [11]. For unequal mass constituents, Moseley and Rosen
further show how to generalize.
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right-hand cuts in E, as is the case for a spinning particle. Thus we could write

1 1 o ND.(E'
G0=Gr -1t [ " ap I OADDUE]

_l 1 J_oo dE' Im GA(t’)DR(E’)
m Dr(t) Jm E'-E ’

(2.10)

where m is the mass of the particles that appear in the vacuum polarization, i.e.,
the quark mass. Note that the asymptotic approximation G will not distinguish
negative E from positive E. Instead, we are using the fact that G and hence D
should make this distinction. In our algorithm this is made explicit by the use of
separate boundary conditions for +m and —m. These boundary conditions will
differ for particles of different spins.

How will the solutions reflect this analyticity structure? Left- and right-hand cuts
are equivalent to D-functions which have even and odd pieces in E. Each piece
will obey moment conditions like (2.5). The minimum CDD solution is determined
by the minimum number of constants necessary to satisfy the boundary conditions
appropriate to the spin. In this way we see that the differences between the spinless
and spinning cases become only a matter of detail.

3. Spin-% construction

In this section we study the modifications necessary when the absorptive part of
the 2-point function involves fermion-fermion scattering. We shall show that the
lowest order solution gives zeros at the bound states of a fermion in a naive bag,
just as the lowest order solution for the spinless particle gave zeros at the bound
states of a scalar particle in a naive bag.

We wish to remove a cut in E rather than E” in the calculated Green function
G 4. This leads, as in eq. (1.4), to the new moment conditions

oo

(J‘;ﬂLL ) (Im GA)E’D(E)dE)=0, p=0,1,..., (3.1)

or equivalently
J Im GA[EPD(v, E)—(-E)’D (v, —E)]dE =0, p=0,1,.... (3.2)

If we split D into parts even and odd in E,
D(v, E)=D,(k*)+ EDy(k?), (3.3)
we ﬁnd, using kdk = EJE

(ool

J' (Im Gk ' Dap(k*)dk=0, n=0,1,.... (3.4)
[}
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The functions D, and D, obey the same moment conditions as the functions D in
the previous discussion.
Let us suppose now that Im G4 =t", where we now make the convenient choice
=zk?. In this case, the solution to (2.5) is given by

D =k ™*[aoJ, (kR)+arkJ,,1(kR) +- - -], (3.6a)
DY = k™" [boJ, (kR) +b1kJ, 1 (kR)+- - -]. (3.6b)

The infinite number of constants in eqs. (3.6) is equivalent to the CDD ambiguity.
The assumption of minimal asymptotics for the D-functions, which corresponds to
the usual dynamical constraint that hadrons are dynamically determined, reduces
these constants to a minimum number. In fact, as we show below, the minimum
condition is b, ao, and a1 non-zero. Choosing b, = 1, which is an arbitrary normaliza-
tion for Dy = Di,o) +ED{,°), we have

D0=kiv[(a0+E)J,,(kR)+a1k],,+1(kR)]. (3.7)

The Green function itself is now determined by the requirement that G -
k*” + exponentially decreasing terms, namely
(aO +E)J—V(kR) B alkJ—V—l (kR)
(ao+EWM.(kR)+a\kJ,+1 (kR)
_ DO(_ v, E)
DO(V7 E) '

G(E, v)=k*

(3.8)

We can call on our experience with solutions of the Dirac equation to generalize
(3.8) and define two new Green functions,

_ D™ (~v, E)

G*(v, E)—m,

(3.9)
corresponding to j=v=I+3and j=vr—1=/—%for G" and G, respectively. D™
is the combination D, + ED, defined above; D~ is a different combination which
is given by eq. (3.8) and the Dirac ‘“‘threshold” conditions below.

Our conditions for G* will be

0
k", E->m,

G _){kxz, E->—-m.

(3.10)
The condition at £ > +m gives us nothing new; that at E - —m determines a, = m.
The constant a; remains as yet undetermined.

We can find a, by using a MacDowell-type symmetry that a free Dirac particle
must obey,

-k*G*(v,~E)=G (v+1,E). (3.11)

This equation refers to states of the same j but of opposite parity (—1)". When
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applied to egs. (3.8), the symmetry gives immediately a; = 1. The additional
requirement that both solutions E™ for the bound states at D™ =0 approach m
from above chooses the root a; = —1.

In summary, the leading order D-functions are

D (v, E)y=k "[(E+m)J,(kR)—kJ,.1(kR)], (3.12a)
Do(v, Ey=k "[(E+m)J,(kR)+kJ,_1(kR)}]. (3.12b)

Higher order corrections of the form Ga—>t"(1+ gtf“ + -+ +) can now be handled
analogously to the discussion in ref. [6]. In addition to the moment conditions, the
D™ must give G~ which satisfy the conditions (3.10).

4. Perturbative corrections and numerical results

In this section we discuss the role of logarithmic corrections; these corrections
arise naturally in perturbative calculations of the 2-point functions. As an example
which illustrates the numerical effect of these corrections we consider up to the
sixth order in the 2-point function constructed with oV=0%= #y.. This quan-
tity, which is of direct interest for o(hadrons)/o(¢*¢~) measured in e e annihila-
tion, has been recently calculated [12]. The results of this calculation are inserted
into the confining algorithm described in sect. 3 and thus provide a perturbative
correction to the bag for fixed radius R. We find that the correction is numerically
small and moreover provides only a constant shift in the position of the high-lying
poles. This means the trajectory can never become linear as a result of the use of
a single logarithmic correction.

The single logarithm can be handled in two equivalent ways. Let us suppose that
we are dealing with a function of the type

Imf=Ar[1+AIn(4R°1]. 4.1)

This can be regarded as a standard power correction, as in sect. 2, by writing

d
Imf=At”[1+)\—(4R2t)e
de

E=0] . 4.2)

The derivative with respect to £ can be taken at the end. Alternatively, we have
(4R?1)"[1+A In (4R’1)]=(4R*)" " [1+0(D)]. (4.3)

This is the zeroth order form with a shifted value of ». Both eqs. (4.2) and (4.3)
are equivalent because they lead to the same values of the bound-state poles. We
shall discuss a concrete example of such a correction below. For now we assume
eq. (4.1) holds and discuss the corresponding zeros.

There are various ways to locate the zeros of the D* function, corresponding to
v=1[+%=j. For us it is most convenient simply to plot the zeros of D, (v) for a
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sequence of discrete values of v, then to interpolate to the zeros of Dg (v +A). The
relevant zeros for D" in our example will be at j =3+ A. The zeros of Dj (v) are
given by the zeros of

dy (v)=(E +m)J,2RND—2J1J, . .2RVY), (4.4)
or of _
do(v)=do (v)R
. (4.5)
=Wz +u+u W (2) — 2J,.4(2) .
In eq. (4.5), we have defined the dimensionless variables
z=2RJt=vE*~m’R, (4.6)
uw=mR, 4.7

which are parameters in the problem.

We plot dg as a function of z for various v. The zeros of this function can then
be located and plotted for v versus z; this last plot represents a Regge trajectory.
Fig. 1 shows a sample plot of d; of » for the case » = 0. Fig. 2 gives the trajectories,
given the zeros for » =0, 1, and 2 read from graphs like fig. 1.

d(‘;(v.z)

Fig. 1. The function dg (v, z), eq. (4.4), with »=0, as a function of z =VE*—m*R for various
values of u =mR. The zeros of Jy(z) are marked by a full dot and represent the zeros of dg (0, z) in
the limit g - 0.
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3/2

I/

N

-1/2

-3/2

Fig. 2. The v-trajectories, solid lines, for dg (v, z), j=v = [+3, z=kR and u=mR =0, 1, 8, 0. The
zeros of dg (v, z), dashed line, j=v—1= l~% for u =0. When u -, dg (v, z) =dg (v, 2), i.e. there is
no ‘‘spin-orbit” splitting. Note the sign of the spin-orbit term corresponds to scalar confinement.

The trajectories become linear in z for large z. This can be seen by (self-
consistently) assuming zeros at z = O(v). We define a by z = v sech «a (i.e. z <v;
we get only the leading trajectory this way) and can use Debye asymptotic
expansions for J, (v sech a) and J,, (v sech a) in the alternative form

Gy =W - win—z (L-1). (4.8)

For . =0, the equation d; has solution z = ». For u = 0, the equation d; is the
solution of J,.1(z)=0, i.e. z=vr+1. Comparison with fig. 2 shows that these
asymptotic forms are already well approximated at low values of ». Of course a
plot linear in z =2R Jt versus v will be of the form » ~Vr, characteristic of the
well, compared to the conventional Regge trajectory linear in ¢

For a specific numerical example we could set » =3 and fit m and R to the p
and p’ states. We find the reasonable values R =0.72 fm and m =370 MeV. For
comparison with the one particle bag parameters it should be born in mind that m
corresponds to twice the quark mass and R to half the bag radius [11]. We can
predict the location of the next recurrence at M =2.45 GeV but since in zeroth
order our confinement is in a square well, this state is very likely too high.
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For a specific example of logarithmic corrections and their effects, we turn to
the 2-point function

(u (), (0)) =(F (x)y,. F(x) ¥ (0)y, ¥(0)) . (4.9)

This function has recently been calculated [12] to sixth order in the coupling for
QCD in SU(N) of color and with an arbitrary number N; of flavors. The result
for large ¢ is, to O(g(’),

Im f~(RH{1+ ¢ In (tR?)}, (4.10)
where

£ =3ba2, (4.11a)

2
a=aN=2_N, (4.11b)

4m

1 1 Nf)

=— -— —-2—=). 11
b 96772<1 N2>(11 2N “.11c)

Although the full answer for (4.9) in ref. [12] is renormalization method dependent,
this dependence can be absorbed into the irrelevant (for us) constant in front of
(4.10). There is also a single power of « in this overall constant.

The numerical effect of (4.10) is very small. For N =3, N;=6 and, say, a =0.5,
{ =—0.04. Such a shift from » =3 is virtually invisible on fig. 2. In particular the
spacing of the trajectories for some given w is a second order effect in ¢.

For a more general 2-point function the O(&) term will have a logarithm, due
to the anomalous dimension v,. Namely, we expect [13] in general to O(g*)

Imf~t"{1 +%yn In (tRz)}, (4.12)

1 1 © (n—1)

T2 a1 Sl+n)I+1)° (4.13)

Yn
This shifts the power » in a way that depends on n. For n =1, the case considered
above, v, =0, in accordance with the result (4.10).

Fig. 3 shows the result of inclusion of the anomalous dimension, again using
a=0.5 (a/27=0.24). All other parameters are fixed from the zeroth order fit to
p and p’, namely m =0.37 GeV and R = 0.72 fm. We also include on this plot the
particles* lying on the trajectory. The change is in the right direction. Note that

* Ref. [13] makes precise the operators which correspond to the anomalous dimensions, eq. (4.13),
namely the twist-two traceless (or symmetric tensor) operators. For these operators the asymptotic
behavior of Im f, eq. (4.12), is a continuous function of v and describes the so-called ‘‘vector”
trajectory. The A, shown in fig. 3 is assumed to correspond to this set of operators, as does the p.
There will presumably be other trajectories corresponding to other sets of operators.
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E? (GeV?)
5

7 8 9 10

6

T T
.,
2m

-2 ! ! 1 L L 1 1 1 1

Fig. 3. The p, p' Regge trajectories to order & The p and p' (input) are marked by full dots. The

(a@/2) =0 trajectory, fig. 2, with n = V+%, u=mR =134, m=0.37 GeV, R =0.7 fm is shown by the

dotted line. The solid line represents the trajectory with anomalous dimension correction, eqs. (4.12),
(4.13), with (&/2m) =0.24. The dashed line shows the function n(E)=0.5+ 0.83E7 for reference.

since the asymptotic form of the trajectory with anomalous dimension correction
is v ~E, the plotted trajectory will eventually turn over and cross the linear
trajectory. However, this may happen at a point where the perturbative result is
no longer valid, since eq. (4.13) can be rewritten as

% A
Vo=—0.346+2Inn-2 Y k

ie2nn+1)—(n+k—1)’ (4.14)

where the A, are a set of tabulated numbers. The In n term implies that for
sufficiently large n, (@/2m)vy, is not small.

We could have taken an alternative tack, by fitting a@/2# to a reasonable slope
near n =1. This would give a/2m = 0.8, which corresponds to a QCD coupling
constant high by a factor of roughly two. We do not take this approach because
we expect that when power corrections come into play the p trajectory will straighten
out and the same phenomenology will ask for a much smaller &/2.

Finally, we could also have done the same phenomenology for the J/¢ and V
Regge trajectories. The results are qualitatively very similar, the only change being
different values of m and R in eq. (4.4). We reserve extended confrontation with
the meson spectrum for the next stage, where we shall include the true confining
force, which corresponds to corrections of order 1/¢%,

5. Conclusions

The procedure we have discussed here is in some sense analogous to the develop-
ment of perturbative quantum field theory. By this we mean the following: In
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perturbation theory we begin with free field quantities, such as propagators. Interac-
tions are then introduced; they are described in terms of the free field propagators
and some additional quantities, the interactions. In our case we start from a given
leading asymptotic behavior, ¢*, and develop a two-point function which corresponds
to a free field in a confining well. The D-function Dy which describes this behavior
is analogous to the free propagator in quantum field theory. The role of interactions,
which are manifested in corrections to the leading asymptotic behavior, then give
a corrected two-point function; the corresponding correction to the D-function
can be expressed in terms of Dy and the correction to the asymptotic behavior.
Just as interactions in quantum field theory lead, through renormalization, to a
corrected set of parameters for the “free’ field quantities, so too do the corrections
to the leading asymptotic behavior lead to confining behavior which is closer
to reality than the original infinite well confinement imposed in computation
of D.

Free field propagators vary according to the spin of the propagating particle. We
similarly have found that D, must be chosen through appropriate analyticity
behavior, according to the spin of the fundamental constituents of the operators
making up the two-point functions. This behavior will then be naturally carried
over into the higher order calculations. We have in this paper shown how additional
information about the spin of the particle assumed to be confined manifests itself
through analyticity properties, and in this way we have developed a connection
between asymptotic behavior of a two-point function and the location of the bound
states appropriate for spin-3 constituents. This carries the initial work to a point
where a realistic phenomenology of the spectrum of QCD can begin.

We have looked at one piece of this phenomenology in this note. Corrections
to the behavior ¢’ are of two types: non-perturbative power corrections and
perturbative logarithmic corrections. The logarithmic corrections are short-range
and will not by themselves be responsible for confinement. Nevertheless it is
interesting to see if they have a substantial numerical effect on the location of the
poles. Our conclusion is that they do not beyond second order; we have arrived
at this conclusion by studying a specific two-point function for spin-3 particles
calculated to sixth order. The effects of the anomalous dimension for arbitrary
angular momentum is substantial, although linearization of the trajectory will only
come from power-type corrections. Contributions from power corrections represent
a major area to be explored in the future. These come from fermion mass terms,
i.e. from chiral symmetry breaking, and from other effects of the non-perturbative
vacuum.
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